
26 The Delphi Magazine Issue 39

One Last Compile...
Delphi Goes To Hollywood

Occasionally in life you get what I call ‘William
Goldman reversal.’ For those of you not familiar

with the works of Mr Goldman, he’s a Hollywood
screenwriter and novelist who has written, among
many others, Butch Cassidy and the Sundance Kid, All
the President’s Men, The Princess Bride, and a book
about Hollywood called Adventures in the Screen Trade.
(Then, just to prove that nobody’s perfect, he wrote
The Ghost and the Darkness.) It’s in Adventures in the
Screen Trade that he explains the idea of a ‘reversal’: a
moment which conveys information to the audience
that is the opposite of what they’ve come to expect, or
that changes their understanding of the plot, making
them suddenly sit upright, put down their popcorn,
and start concentrating again.

I was somewhat surprised to have a William
Goldman reversal reading Issue 35 of The Delphi
Magazine. Step forward Hallvard Vassbotn, author of
The Rise and Fall of TObject. Don’t worry, I’m not going
to make fun of you, it’s just that Mr G himself would
have been proud of the jolt you gave me in your second
paragraph. And it’s lucky for me that you did.

I’ve always considered myself a careful programmer.
In the byways of Windows I liked to think my program
was a model driver, always signalling before making a
turn, using the litter-bins at laybys, considerate to
others on the road. And then I read this:

“Everyone knows that you use the Create con-
structor to create an object instance and the Free
method to free it. Most know that you have to
override the Destroy destructor to add behaviour
when the object instance is going away.”

The key sentence here is the second one, and the key
phrase is ‘Most know...’ Most. But not me. Nor, sadly,
did it appear to be common knowledge to the authors
of a book I’d cribbed extensively from, who had cheer-
fully used a destructor Free in all of their examples,
with nary a mention of Destroy. All my objects had the
additional behaviour in a destructor Free. Hallvard
seemed to think this was bad. But everything seemed
to work okay in my new program where, for the first
time, I’d made extensive use of objects. It compiled
okay, ran without any errors, did what I expected it to
do. In any case, did it really matter whether I used Free
or Destroy? Just another uptight OO purist, I thought,
fussy about the correct protocol. In the back of my
mind there was some uneasiness about all this over-
ride, abstract and virtual business, but I ignored it.

Still, just to be on the safe side, I fired up Memond to
check my memory use. This was a humbling experi-
ence. I discovered that, far from being a model driver,
my program was more akin to an out of control
juggernaut, hurtling at high speed down the back lanes
of Windows, throwing hand grenades out of the

window and leaving a trail of destruction behind it.
When the program closed, doubtless accompanied by
a breathless sigh of relief from the operating system,
the amount of memory still allocated to it looked like
the GNP of China.

It took me a while to figure out what was going wrong
(and I’m still not 100% sure about it) but here’s what I
think was happening. The way I’d written them, each of
my objects had two Free routines that they could use.
They could call the standard TObject.Free, or they
could use mine. When it came to closing down, I’d just
cavalierly said MyObject.Free, and the program had
gone off and used the standard version. So unless I
explicitly used a typecast, ie (MyObject as
TmyObject).Free, my bloated objects were being cast
out into the Windows darkness with all of their data
still attached.

So, I’m sorry I doubted you Hallvard, and I’m sorry to
all those of you reading this clutching your heads and
saying ‘This guy should never be let near an object
again.’ And I’m sorry to those of you who’ve only read
this column because they thought a William Goldman
reversal was going to turn out to be something rude.


